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THE LIMITING MOISTURE PROFILE DURING INFILTRATION 

IN TO A HOMOGENEDUS SOIL 

Pivw Yoi. 31, No. 4, 1967, pp. 770-776 

N.V. KHUSNYTDINOVA 
(Novosibirsk) 

(Recdued November 18, 1966) 

The present paper deals with a quasilinear second order parabolic equation describing an 
unsteady one-dimensional infiltration and investigates the time asymptotic of the solution 
of the probls m of formation of moisture saturation profile when the infiltration struts at the 
surface.. The existence of a limiting profile expanding with a constant velocity is proved 
and estimates are given for the speed of approach to this profile with increasing time, when 
the soil has unlimited capacity, An estimate of the speed of approach to the steady (homo- 
geneous) distribution is also given for the soil of limited capacity. 

During the infiltration into a homogeneous soil, moisture uft, x) of the soil being a func- 
tion of time t and of depth x of the layer (the X-axis is directed downwards), satisfies an 
equation of the type 

(1) 

fi(u)>O, Rfu)>O, D(u)>% K’(u)>% ~“@)>P>Owh(u>uo>Of 
Taking into account initial moisture distribution in the soil and infiltration on the sur- 

face of the ground, we obtain the following boundary condition: 

n 0, 0) = u1 (t > O), u (8, 2) = UI (x) (8 6 x < oo) 

~0 ( uo (2) < ul (lim Q (2) = ud when -++oo) (2) 
Here ut = 1 denotes the moisture corresponding to full saturation of soil on the earth 

surface. 
In the presence of ground water at the depth x = X, 

form 
our boundary condition assumes the 

Y (t, 0) = Ur, u (t, X) = ur, u (0, 5) = y (2) 

o<x+dx, uoa~(x)dul (3) 
The problem of determination of the limiting moisture profile during infiltration into the 
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soil i.e. investigation of asymptotic behavior of solutions of bound@ value problems (l), 
(2) and (1). (3) as r + ~0, is of great practical value in the problems of irrigation. A number 
of fore+ authors [l to 41 investigated the physical and partly mathematical aspect of this 
problem,and they have put forward an assertion which was either based on physical consid- 
erations, or was arrived at intuitively, It stated that after sufficient time the moisture pro- 
file assumea some permanent form, which then moves downwards with a constant velocity 
without further change. 11% and Oleinik have investigated in [S].the asymptotic behavior 
of solutions of Cauchy’s problem for Eq. (1) with D(u) u const, encountered in gas dyna- 
mics. 

Methods given in the present paper extend to the case D(u) $ const, applied to boundary 
value problems (l), (2) and (l), (3) (Cant&y’s problem has, in this case, no physical mean- 
ing). 

Let the coefficients of (1) and the boundary functions satisfy the conditions of existence 
and uniqueness theorems, the latter being bounded to ether with the derivatives of solutions 
of boundary value problems (1). (2) and (l), (3) (see 16 ). gl 

We shall denote by V(X - At + C) (A > 0) 
condition 

a simple wave solution of (l), satisfying the 

IJ (-w) = %, u (+ w) = r$l (4) 

Integration of (1) together with (4), yields 
u 

x--At+c= S D (u) du 
[K’Iuo+e(~-hdl--l(~-4d (O<@(u)< 1) (5) 

UI 

It is easy to see that when so < u 2 < IL t and K”(u) >/cc > 0, then a simple wave solution 
satisfying (4) exists, is a monotonously decreasing function since 

au 

az’ 
tK7UO+ec~---;-4(II-%~ <o (6) 

for any finite values of .x and t, and is defined with accuracy of up to the displacement C 
along the X-axis. Velocity A of the parallel displacement of the wave is given by 

A K(s)-K(u,) = 
w- uo 

Theorem 1. Let u(t, x) be a solution of the problem (l), (2). If the initial function 
a&) satisfies, at all x >, 0, the inequality 

(7) 

(where M, is a constant), then such constants M > 0, Co and fl> 0 independent of the solu- 
tion I& x) exists, that the inequality 

I u 0, 4 - u (2 -AAt+C,)l+lfe+’ (8) 

holds. 
P roofi Let us perform the following change of variables: L’= t, x’= x - At and return 

to the former variables L and X. Then, the boundary value problem (1). (2) reduces to 
au a au . 

at== D@)ax -- 1 d K” (u) 
ax 

u(O,x)=uo(x) (O<x<w), u(t, --.4t)=ul (t>o) 

(9) 

(10) 

Constaut Co is chosen so that K 
P(u{cK(u),-A&C* 

defined in the region P(t >, 0, 
uo) = K (u,) = 0. Solution of the problem (9), (10) is 

- At \< x < -1, bounded by r{t >/ 0, n = - At]. 
Simple wave solutions U(x - Ar + C) of (1) satisfying condition (4) now become station- 

ary solutions U(x + C) of 

(11) 

also satisfying (4). 
The basic method of obtaining the inequality (8) utilizes a generalized maximum princi- 

ple formulated as follows. 
L em m a. Let a function u(t, x) be defined and continuous in the region P 
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u (1, 2) > 0 onr; u (2, If >, M (t) II + I xi1 
where M(t) is a continuous function. If the inequality 

L(u) = a (t, 2) azr as, +b(t, & +e(t, z&+d(t, r)u*50, (2, t)E p 

where o(t, x), b(t r) c(t, z) and d(t, z) are bounded in P and d(t, ~16 0 while c(t, z) ,< - k, 
< 0 holds, then n(t, x) > 0 in P. 

This Lemma is completely analogous to Lemma 1 in [S], and we shall use it to prove the 
following well known property of solutions of (9). 

If tl 1f:, x) and a#, x) are two solutions of (9) and u t(t, z) 1~ .$ u&, z) 1~ , then u t(t, z) 
6 a&, z) in P. In particular, we have by virtue of this property 

u, Q @ 0, z) < Ul (12) 
Let us now consider two simple wave solutions (I, (x + A tt + C,) and US& - h,t - C,), 

(Ct, C, > 0) of (9), each satisfying relevant conditions 

U1(-Qo) = ui, U,(+co)- u,- e; U,(-00) - ul+ 6, u2(+4 = UI 

where the wave velocities A t> 0 and h 2> 0 are given by 

A = ~a(~l~-~o(~o-~) ~(~1++8)-~@0) 
1 

aI-&IS-e ’ 
1Ls = 

w+S-% 

We shall assume the 8 > 0 is sufficiently small to satisfy 

&BD (~)YL - K” (3, II < A ( 1.3) 
Let us estimate the difference Uz (r - h,t - C,) - I+,. By analogy with (61, we have 

dUa aua [K”’ (uo + 8 (Us - uo)) - h21( uo - kJ -=-- 
ds ar - f)(uz) 

(0 < 8 (V,) < i, 8 = 2 - k,t - C,) 
Obviously 

K”’ (ug) - I., 

D(w) 

< K0'(uo+0(~2-~~)--A2 

D(U2) 
<O 

Let us put 

Thus 

K” (up) - &, 

D (6 
=-ma (naa<n) 

--mra(Ua-hua)B -q&o, or -Jn&sgdln(U,-uQ)6;0 

This yields 

Ua (14 

The inequality 

_ ud ( e’-“k’ < K@h(X-ht) 

Ux - u1 g Kz,ml(r+~~t) 
( 

ml = x0’ @I) + h 

D(w) 1 
(15) 

is derived in an exactly analogous manner. 
When C, and C increase, initial value of U, (r + C1) decreases while that of U,G - C.J 

increases, and by 13) and (14) we have t 
uow-@e 

U,(x-CCa)--- G”@<W 
i.e. the initial function ug(z) converges to 80 not slower than U& - C,). Consequently, 
constants Ct and C, can be chosen so that the inequalities 

UI (2 + Cl) < uo (4 e u, (5 - C2) 
hold. Bnt then we have 

@<*<4 

Ul(Z + hr + C,) B IJ (G 2) d u, (t - &t - C,) (z, t) E p 116) 
From (12) and (16) we can obtain the following properties of the solution s(t, 2) of the 

boundary value problem (9) and (10) 

(1) lim @ (tt s&) =: ~a when t E [O, TJ (T is any finite number) 
X--c+00 

(2) t$f& ax au=0 when tE[O, T] 
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(3) lfm au(fbzA’) = 0 
f_ 

(4) At any finite 1, the following integral exists 
00 

1 [u(z, x)-uo]dx<~[Eh(x-~2~-C2).-~]dx 

x 

The first propert; follows directly from (12) and (16). The second property can be 

P 

ro- 
ved using inequalities in a manner completely analogous to that used iu Lemma 3 of 53. 
To prom the third property we subtract u 1 from all parts of the ineqaality 

Using (15) we have 
u1* (1: + M + Cl) < u (W < Ul 

IJ au I 
aZ dl: = ) u (1, xj - u1 1 < Klem’ (r+h’t) 

enta 
ce 1 

analogous to those given in the proof of Lemma 5 in !4] we find, that sin- 
M = conat, the latter inequality implies that 

(17) 

and this, in tnm, gives the final result 

au 
-& x=-At I 

-to as t-too 

Assertion (4) follows from the inequality (12) and existence (by (14) of the integral 
03 

s 
[U,(z--Ahzt-CCz)-uo]dl: 

x 
Properties (1) to (4) of the solution of (9), (10) can be used to prove the existence of a 

limit to the function 

J(1)= i r 

09 

u t, x)-uul]dx + ( 
s 

[u(t, z)- uo]dz 

-At 0 

Indeed 

a 
at [ i rUk =) --ulldx + i[u(t, x)- uOJ d+ 5 

au(t x) dz. 

-At 0 -At 

a; 

m 

= $]-K”(.))dx=D(ul) auj; x, lx=_ 
Since 

K0 @*I = K” Iu (t, 
then 

--At)] = K" (ul) = 0. I-& u (2, - At) I< KoeJn’r(A-Ar)t 

lim t_+J(O=” 

Obviously the function 

when 2 = t _+ 1 1-E (0, 11 
is continuous. This specifically implies that 

exists. 

Let us also estimate the rate of convergence of J(t) to the constant B 
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thus we have 
I J(t)- B J < li; (t + i) e-~~(A+)t (18) 

Next we shall establish the convergence, uniform in t, of the solution u(r, z) to uu as 
x -+ + 00. Putting 

Q=- 
maxiK*‘(u)t ,. 

D (no) / 

we choose the constant Y appearing in 

sufficiently large to make ~(0, x) >, 0. This is possible since yt > Q. Integration of (9) from 
x to m yields 

&d 
D(u) ax -_K”(U)+~~U(l, r)dx==O 

Let u(x) = Me** + uu. O$dously 

D(u)yg-K'(v)= -Med"[Du +K"'(e)]<o 

%deqh+MPx, iKvdi>IK7e)I 
Subtracting (19) from (20) aud taking into account that 

(19) 

(20) 

-(u-u&-(J(u(l, x)-U(t, x))dx)=~ 
we obtain the following inequality 

x 

&y 
D(u)~-Kof(&-~<O 

Since tbe function y(t, x) satisfies the conditions of the Lemma, we have 
co 

s 
[uft, x)-r@ldx\< f Me-‘” 

from which. the uniform in t c&vergence of the solution u(t, X) to ILQ as % + + 00, follows. 
We shall now consider the function 

L (t, z) -5 [u (t, 3) - U (x + Co)1 dx 

where U(x + Cu) is a stationary solut?on of (11) satisfying the condition (4) with constsnt 
C, defined by 

0 co 

s 
[fJ(x+Co)- ul]dz+ [U(z+Ca)--uo]ds=B 

s 
- 0 

Such a constant exists by virtue of a monotonous dependence of U(% + GO) OR C. 
be shall prove that when t -t 00, the magnitude 1x(:, x)1 can be made smaller than any 

given u > 0. That the inequality I& x) 1 < e when t >, 7’ and bound&tees of the deriva- 
tive, with respect to x, of the integrsnd function yields the estimate (see [S]) 

I u 0, 4 - CJ (z + Co) I < KcJO If; (21) 

for t > T where Ku” is independent of t. 
Let us integrate each of the identities 

aKD ru (r, x)1 E o 
f3X 

& D(U(x-+-Co)) f 
av(x+co) 

ax 1 _ au(z+co) _ a~“lu(~+coN E. 

at ax 
from x to 04, subtracting subsequently the second resulting identity from the first. 

Taking into account the fact that 
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we obtain 

U-k_-& 
M 

s [u (t, 4 - u (I + Co)1 dx 
x 

where 0, and 0, are mean values between u(r, n) and U(x + Co). Let us denote 

D (u) = D, [D’ (@I) $ -K”‘(8,)]=B. L(y)=.D$$ +B $ -+ 
Let U, choome a l ufftcientty t-go N such that when 1x1 > N the inequality B < -I+ < 0 

holds (this is possible by virtue of the uniform convergence of u(r, x) to uo). Then 

L(e~‘ex~hx)=uAe~aex~Xz~XX[hD(aexphx-l)+B]<O 

for 1x1 <N, a= k-texp(- hN) (k 3 1) and with sufficiently large h; 

L (e-“x) = a [aD - B] e-%” < 0 
for x > N and with sufficiently large-k. 

Clearlv. we can construct a function O(r) continuous together with its second order deri- , . 
vative, coinciding with the function cp(x) E exp hz when z >,N. smoothly becoming linear 
q&x)mzwhenx>Nandsuchthat 

L (e-“Q (x)) < _ &-aQ (5) < 0 

Function 
IY (t, x) = M~I=Q W+ + e f z (t, r) 

is nonnegative on the boundary r of P when a and p are fixed and Mt is sufficiently large 
Indeed, when x >, N and t >/ T, we have (x(0, x)1 ‘< e and 

I 2 (tv -At)I=I1(t)--l<~ 
Consequently, when Mi is sufficiently large, we have 

IV (0, 2) = Mie‘aQ(X) + a f 2 (0, x) (22) 

..lt) = M~~--~Q (-At)-~t + e f z (t, - _.a) > o (23) 

Also 
w (r, - 

L(W)=L (M~e-aQ(X)-Ct)+ (Lfz +e)<(-6+$-)e-aQ(X)q’<Owhen B<S 
Thus function W(t, x) satisfies the conditions of the Lemma and 

15 [u (t, 2) - .!J (x + Co)] c&x I< Mie*Q (x):-gt + e (24) 

If, tahing into account the inequalities (7) and (18) we put 

! 

1 
a=min ,kexphN t rl 1 

and choose @.$a small enough to ensure that aA - @ > - ml(A - h 1), then we can put 
E= 0 in (22), (23) and (24). From (21) we obtain 

1 U (t, 5) - U (X + Co) 1 < Me+aQ GxPWt 

where M is a constant independent of r. 
Returning now to the forma variables x and t, we obtain the proof of our Theorem. 
Theorem 2. Let u(t, L) be a solution of the boundary value problem (I), (3). There 

exist such constants M and 8, that the inequality 

1 u (I, 2) - uy 1 <Me”’ 
holds. 

Proof. We shall write (1) as 

and put 
D(u)c%lc3i+ [D’(u) au/&r-K”(u)] au/&r-au/at =0 

C 

8U 

D’ (~0) yg - K”’ (u)] = B, D(u) = D 

Function 
IV (t, 2) = Mlc-aexp hx-.3t f [u (‘, 2) - Ul] 

is nonnegative on the boundary r of the region R(t >, 0, 04 x \< X) when a is fixed, and M, 
is sufficiently large. Since at auf lciently small awe have # 
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SW aw aw 
L(W)=D~+B~--==alexp(-aeax-_pl)eAX[~D(aehx-_)-_ J?’ 1 

in the region R, function W(t, X) caunot attain a negative minimum in R as at the point of 
negative minimnm we have d’W/&2>, 0, dW/& = 0 and r%//d:G 0, which implies L(W) > 0 
which in turn contradicts (25). 

1. 

2. 
3. 

d 

5. 

6. 

Thus W(t, x) > 0 in R and it follows that 
1 U (t, I) - u1 1 < Mled exp h+t 

The assertion of Theorem 2 is obvious. 
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